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Yekutieli Y, Mitelman R, Hochner B, Flash T. Analyzing
octopus movements using three-dimensional reconstruction. J Neu-
rophysiol 98: 1775–1790, 2007. First published July 11, 2007;
doi:10.1152/jn.00739.2006. Octopus arms, as well as other muscular
hydrostats, are characterized by a very large number of degrees of
freedom and a rich motion repertoire. Over the years, several attempts
have been made to elucidate the interplay between the biomechanics
of these organs and their control systems. Recent developments in
electrophysiological recordings from both the arms and brains of
behaving octopuses mark significant progress in this direction. The
next stage is relating these recordings to the octopus arm movements,
which requires an accurate and reliable method of movement descrip-
tion and analysis. Here we describe a semiautomatic computerized
system for 3D reconstruction of an octopus arm during motion. It
consists of two digital video cameras and a PC computer running
custom-made software. The system overcomes the difficulty of ex-
tracting the motion of smooth, nonrigid objects in poor viewing
conditions. Some of the trouble is explained by the problem of light
refraction in recording underwater motion. Here we use both experi-
ments and simulations to analyze the refraction problem and show that
accurate reconstruction is possible. We have used this system suc-
cessfully to reconstruct different types of octopus arm movements,
such as reaching and bend initiation movements. Our system is
noninvasive and does not require attaching any artificial markers to
the octopus arm. It may therefore be of more general use in recon-
structing other nonrigid, elongated objects in motion.

I N T R O D U C T I O N

The flexible octopus arm is an amazing organ used in various
motor tasks such as locomotion, food gathering, hunting, and
sophisticated object manipulation (Fiorito et al. 1990; Mather
1998; Wells and Wells 1957). The arm senses its environment
using tactile and chemosensory organs and passes this information
to the brain (Graziadei 1971; Rowell 1966). Octopus arms, as well
as squid tentacles, elephant trunks, and vertebrate tongues, belong
to a group of organs termed muscular hydrostats. All these
structures lack a rigid skeleton and their structural support and
force transmission are achieved only through their musculature.
Although the biomechanical principles of muscular hydrostats are
well understood (Kier 1992; Kier and Smith 1985; Kier and
Thompson 2003), relatively little is known about the neural
control of movement in these structures.

Our research group is conducting a large-scale research project
investigating octopus motor control. To date, two stereotypical
movements have been extensively studied, the reaching move-
ment (Fig. 1A; Gutfreund et al. 1996, 1998; Sumbre et al. 2001;
Yekutieli et al. 2002, 2005a,b) and the fetching movement (Fig.
1B; Sumbre et al. 2001, 2005, 2006). These movements were

studied by analyzing the position and velocity of a specific bend
point (or points) along the arm. The kinematics, together with
electromyographic recordings and detailed biomechanical simu-
lations, revealed some common principles of octopus arm motor
control. In both reaching and fetching movements the complexity
associated with the control of the flexible arm is reduced by
coupling among different degrees of freedom. Despite the signif-
icance of these findings, we believe that the insights—gained
through kinematic description of the movement based on the
movement of a single or a few points along the arm—are rapidly
reaching their limits.

New tools and methods are therefore required for analyzing
the movements of the entire arm in their full complexity. For
example, a significant part of the octopus arm is frequently
used as a manipulator, making it difficult or impossible to
describe by the kinematics of a small number of points along
the arm. Any part of the arm can catch and grip an object by
using the suckers and wrapping the arm around the object (Fig.
1B). During foraging the whole arm searches and senses the
environment (Fig. 1C). Zullo et al. (2005) recently developed
a system for electrophysiological recordings in the brains of
behaving octopuses. These recordings should be interpreted in
conjunction with a detailed description of the three-dimen-
sional (3D) movements of one or more arms.

Tracking octopus arms

An initial step toward a complete 3D reconstruction of the
octopus arm movements involves the reliable acquisition of
motion data. Here we focus only on tracking the arm in video
sequences and describe the difficulties associated with such
tracking. For each video frame of a given motion we need to
track the arm movement by successfully segmenting it from the
background. The nonrigid nature of the octopus arm poses
problems in automatically achieving this segmentation. In
articulated structures (such as the human arm or the exoskel-
eton of arthropods) simple kinematic relationships among the
moving segments can be used to track and reconstruct the
movements (Aggarwal and Cai 1999; Gavrila 1996; Jennings
1999; Zakotnik et al. 2004). In contrast, the octopus arm
undergoes not only rigid body transformations but also changes
its shape, making motion tracking task much more difficult.
Moreover, in images of natural octopus movements, occlusions
of one arm by itself, by other arms, or by the octopus’ body are
frequent (Fig. 2). Other difficulties arise from the physics of the
scene, e.g., shadows from the upper surface of the water may
obscure the shape of the octopus arm.
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In a tracking application, it may be useful to artificially
mark the object that is to be tracked by painting it with some
color or by attaching some markers to key points on the
object’s surface (Bodenheimer et al. 1997; Hughes and
Kelly 1996; Mazzoni et al. 2005). This is very difficult to do
with the octopus arm, for two reasons. First, the octopus can

rapidly change the color and even the texture of its skin,
lowering the contrast of artificial markers (Moynihan 1975;
Packard and Sanders 1971). Second, octopuses try to re-
move items attached to their skin and, because their arms are
very dexterous, they are usually able to get rid of any such
nuisances quite quickly.

FIG. 1. Examples of octopus movements. A: 4 images from a video sequence of an octopus reaching with 2 arms toward a small plastic disc (top left). A bend
is formed in the arms and is then propagated distally along the arms until both are straight. Bases of the arms are rotated during movement to orient the arms
toward the target. Suckers along the arms are kept facing outward, preparing the arm to grab anything it hits anywhere along the arm. B: 6 images from a video
sequence of a fetching movement, where an octopus catches a piece of food and brings it back to its mouth. Arm forms 3 pseudojoints: the distal one near the
food, the middle one at half the distance between the first joint and the base of the arm and a third joint at the base of the arm. C: 4 images from a video sequence
of an octopus arm searching around the aquarium. Bend propagation is apparent as a submovement in this sequence. Bend initiations and sideways movements
of the tip are also common in searching movements (not shown here).

FIG. 2. Occlusion of octopus arms. Left and
right images taken from a video sequence of an
octopus raising its arms (�2 zoom). Segmenta-
tion of the 2 arms in the left view is simpler than
in the right view, where one arm occludes the
other. Automatic segmentation may fail in the
right view. Humans, however, can easily deal
with such common problems and successfully
segment the arm from the background even in
much more difficult cases.
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At the current stage of the system’s development, we de-
cided to circumvent the problems of automatic tracking and
segmentation by relying on the human cognitive ability for
performing these processing steps. A separate system for
automatic segmentation and tracking of the octopus arm is
under development (I. Zelman, M. Galun, A. Akselrod-Ballin,
Y. Yekutieli, and T. Flash, unpublished observations).

Objectives

The aim of the research presented here is to construct a
system capable of achieving accurate 3D kinematic description
of a whole octopus arm in motion.

M E T H O D S

First we enumerate the stages we have used on the way to recon-
struction and then we elaborate separately on each stage in greater

detail, focusing on the techniques and on the specific problems
encountered when attempting to reconstruct the underwater move-
ment of flexible, elongated shapes.

System description

The system we developed takes the following steps to achieve
reconstruction (Fig. 3).

● Camera calibration

● Movement recording using two cameras in stereo configuration.

● For each video frame, the method involves:
1) Manual tracking of the contour of the arms from base to tip in

the two views.
2) Automatic extraction of the two-dimensional (2D) midline (the

backbone) of each contour.
3) Matching the two 2D midlines using epipolar geometry.
4) 3D reconstruction.

FIG. 3. Movement reconstruction pipeline.
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5) Manual marking the orientation of the suckers in the two views
to reconstruct the torsion of the arm in 3D (optional).

● Registration of consecutive reconstructions for the whole
movement.

Physical setup

Viewing (and filming) an object in an aquarium raises the problem
of optical refraction. The deformation of the image of the underwater
object may degrade 3D reconstruction. According to Snell’s law,
when the angle of incidence is zero, there are no image distortions
arising from light refraction. Therefore to minimize these distortions
the two cameras should be positioned with their viewing angles
normal to the aquarium facets or as close to normal as possible (for a
comprehensive review on the effects of light refraction on the accu-
racy of camera calibration and reconstruction in underwater motion
analysis see Kwon and Casebolt 2006).

We have tried two configurations, the one-facet configuration,
where the two cameras face the same side of the aquarium, and the
two-facet configuration, where the cameras face two different but
adjacent facets. The latter has the lowest possible refraction error
because both cameras are normal to the aquarium facet. Another
advantage of the two-facet configuration is that the viewing angles of
the two cameras are perpendicular to one another, reducing to a
minimum the uncertainty of reconstruction (extracting depth informa-
tion depends on the disparity found between the images). The images,
however, are dramatically different and therefore an automatic regis-
tration (finding the correct correspondence) of the two images is very
difficult. In the one-facet configuration, on the other hand, the images
may be relatively similar, depending on the location of the two
cameras. Putting the cameras as close as possible to each other
reduces the refraction error but increases the uncertainty of recon-
struction.

We mainly used the one-facet configuration with 25 to 50° between
the principal rays of the cameras. A detailed analysis of the systematic
error resulting from light refraction revealed that these errors are small
in our setup (see RESULTS).

Data acquisition

Two video streams are recorded onto DV cassettes by synchronized
digital cameras (Panasonic AG-DVC30E camcorder). The data are
later downloaded to a standard PC computer using Adobe Premier
(1.5) software and a FireWire connection (IEEE 1394). We use the
PAL video system at 25 frames/s with image resolution of 720 � 576.
Each frame is composed of two interlaced fields (half images that are
composed either of the odd horizontal lines or the even horizontal
lines). After retrieving the two fields, each is interpolated to a
full-sized frame, achieving time resolution of 50 images/s.

Dedicated software that we developed using Matlab (version 6.5,
The MathWorks) handles all image manipulation, marking, and anal-
ysis.

Camera model and calibration

We used a simple pinhole camera model commonly used in com-
puter vision for perspective projection (Abdel-Aziz and Karara 1971;
Cipolla and Giblin 2000; Roberts 1965). Each camera has 11 param-
eters that define the position and orientation of the camera, as well as
optical characteristics, such as focal length, x–y ratio, and image
center. Radial distortions are not accounted for by the pinhole model,
but because they were small in our experimental setup, we could
neglect such corrections.

The following notation is used throughout. Using homogeneous
coordinates, a 3D point q is represented by [X, Y, Z, 1]T and a 2D point
p by [x, y, 1]T. A 2D line satisfying the equation ax � by � c � 0,
is described by the vector that includes its parameters [a, b, c]T.

A 3D point q is projected onto a 2D point p on the image plane by
the projection equation

p � Mq (1)

The camera projection matrix M is a 3 � 4 matrix that is defined up
to a scale factor. The elements of M are the 11 parameters of the
pinhole camera model.

Calibration is the process of determining these 11 parameters for
each camera. First, both cameras record a 3D object with known
geometry—the calibration frame. This object must have at least six
points that are clearly visible and detectable at the two views. Then,
the 2D position of each of these points is marked in each view. A
least-square procedure estimates the camera parameters so that the
viewed 2D points fit the known 3D geometry (Abdel-Aziz and Karara
1971; Cipolla and Giblin 2000). We use a 40 � 20 � 20-cm
calibration frame, composed of thin metal rods connected by acrylic
glass connectors. It has 15 LEDs (standard light-emitting diodes, 2.5
mm diameter) of three distinct colors, which are clearly visible and
can be easily marked in two views ( Fig. 11A). Marking is done
manually with subpixel precision using a dedicated graphical user
interface (GUI).

Before calibration, the relative position of the center of each LED
should be known with submillimeter precision. We achieved this as
follows. Initially we estimated the positions based on the 40 � 20 �
20-cm dimensions of the calibration frame. To check this estimation
we measured the actual distances between each LED and its neighbors
with Vernier calipers and compared the measured distance to the
calculated distances of our initial estimate. This comparison gave an
average error of 0.5 mm per measurement. Then, using a nonlinear
optimization technique (Matlab’s fminsearch function that uses the
simplex search method; Lagarias et al. 1998) and our initial estimated
position as its first guess, we found the set of LED positions that better
fitted the measured distances (with an average error of 0.07 mm per
measurement).

After calibration, it is possible to reconstruct the position of a 3D
point from its projections, using the direct linear transform (DLT)
procedure (Abdel-Aziz and Karara 1971; Gutfreund et al. 1996; Kwon
2007). The space that the calibration frame occupies is referred to as
the calibrated space and points outside this space have higher recon-
struction errors (Chen et al. 1994; Hinrichs and McLean 1995; Kwon
1999; Kwon and Casebolt 2006). The accuracy of our calibration and
reconstruction is estimated below (see RESULTS).

Behavioral recording sessions

EXPERIMENTAL ANIMALS. Specimens of Octopus vulgaris were ei-
ther caught on the Mediterranean shore by local fishermen or supplied
by the Stazione Zoologica in Naples, Italy. The weight of the animals
studied ranged from 200 to 700 g. The animals were maintained in
50 � 50 � 40-cm aquariums containing artificial seawater. The water
was circulated continuously in a closed system and filtered by active
carbon, mechanical, and biological filters. The animals were held at a
temperature of 17°C on a 12-h light/dark cycle. A few days before an
experiment, an octopus was moved to a larger aquarium (80 � 80 �
60 cm) kept at a water temperature of 18–20°C.

BEHAVIORAL TASK AND VIDEO RECORDING. To generate the reach-
ing movements, a 2-cm-diameter green plastic disk (see Fig. 1A) was
lowered into the water and moved slightly to attract the attention of
the octopus. The octopus either extended one or more arms or swam
toward the target. Every few trials, the animal was rewarded with a
piece of crab meat tied to the target. Bend initiation movements were
filmed either during spontaneous behavior or when a piece of meat
was presented to the animal. Sometimes it was enough just to draw the
attention of the animal to an object (such as forceps) near the surface
of the water. The video recordings of animal behavior were searched
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off-line for specific movement sequences (typically 0.5 to 1 s) that
were then converted into a set of consecutive frames, ready for further
analysis. We than marked the shape of one of the arms in the images
from both cameras for the entire sequence, as described in the next
section.

Manual tracking of arm contour

We developed a dedicated GUI to enable manual tracking of the
contour of the arm in each view and throughout the movement. The
GUI enables interactive zooming of the images to enhance the
visibility of the arm contour and help the user in the decision where
exactly to mark. A trained user can usually deal with poor image
quality and ambiguous situations (as seen in Fig. 2) by studying the
shape of the arm in time and using different zoom scales. The user
marks the contour of the arm from the base of the arm, toward the arm
tip and back toward the base. The actual marking is done by placing
a piecewise linear curve along the contour. The user moves the mouse
cursor freely and adds a point to the curve only when certain about the
position. In this way we avoid the characteristic high-frequency jitter
of freehand drawing. On completion, the marked curve is resampled
to an equidistant, dense representation with 1-pixel distance between
adjacent points (so the number of points is usually several hundred.
Also note that the actual positions of the points are not rounded to the
nearest integer values, avoiding unnecessary round-off errors). The
same procedure is done for the two views and for every time step.

Next, the shape of every contour is processed automatically. The
position of the tip of the arm is found (using the point of maximal
curvature) and the number of intersections of the curve with itself is
counted. This information is crucial in finding the midline of the arm,
as described in the following sections. The contour is then processed
to extract its backbone (2D midline) to later build a 3D midline
representation of the octopus arm. The method is similar to the
representation used by Chirikjian and Burdick (1994) to capture the
major kinematic features of a hyperredundant robotic arm.

Finding the 2D midline of an arm

We define the midline of the octopus arm as starting at the base of
the arm, going all the way to the tip and keeping an equal distance
from the two sides of the arm contour. This midline is similar to the
skeleton (or medial axis) of the shape, which is a well-known
geometrical entity, a curve approximating the local symmetry axis of
a shape (Golland and Grimson 2000). Blum (1967) described the
skeleton using the metaphor of grass fire—a wave front is initiated
from an outline curve and propagates at constant speed. The skeleton
is the set of points where at least two wave fronts meet. Finding the
midline is not identical to the problem of finding the skeleton of a
shape. The difference is that the midline that we are interested in is

composed of only one nonbranching curve, as opposed to the skeleton
that can be composed of several branches.

The solution we use to find the midline is based on the grass-fire
model and is described in detail in APPENDIX A. First the contour is
divided into two sides from base to tip. Then two distinct waves are
initiated from the two sides of the contour and are propagated at an
equal speed inward (Fig. 4A). The set of points where the wave fronts
collide is the midline (Fig. 4B). A further step of border following is
then needed to convert the midline into an ordered set of points.

If the octopus arm forms a loop, the contour crosses itself and a
straightforward implementation of the wave propagation solution is
not sufficient. Instead, the arm shape is segmented into two parts and
the wave propagation solution is implemented separately in each part.
The resulting midlines of the two parts are combined together to form
one continuous midline.

We now have two backbone curves, one for each view, ready for
3D reconstruction. The technique we use is based on finding a match
between the points of one backbone curve to the points of the other,
as described next.

The matching problem and epipolar geometry

Given two 2D points that are the projections of one 3D point and
given the projection matrices, the 3D position of the source can be
calculated. Because our data are composed of the midline curves
extracted from images captured by two cameras, we need to find the
correct matching between the points on the two views. This matching
ensures that any pair of 2D points (a left point and a right point)
originated from the same 3D point. A geometrical relation between
the two views—the epipolar geometry (Fig. 5)—states that for any
point on one view there exists a line on the other view where the
matching point should be (Faugeras 1993; Hartley 1992). The epipolar
geometry reduces the search for matching points from a 2D search (on
the whole plane) to a 1D search on that line. The epipolar geometry
is described by Eqs. 2 and 3 in which F is a 3 � 3 matrix termed the
fundamental matrix. F is constrained to have rank 2 (i.e., det F � 0)
with only 7 degrees of freedom (df) and not 9 df

�x1y11�� ƒ11 ƒ12 ƒ13

ƒ21 ƒ22 ƒ23

ƒ31 ƒ32 ƒ33

� � x2

y2

1
� � 0 (2)

or, compactly

p1
TFp2 � 0 (3)

The left point p1 should lie on an epipolar line l1, i.e., p1
Tl1 � 0, and

the parametric representation of that line is defined by

11 � Fp2 (4)

Similarly, Eq. 3 leads to the definition of the other epipolar line l2

FIG. 4. Midline of the arm is found by the collision of 2 waves that propagate from the 2 sides of the contour inside the arm.
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12
T � p1

TF (5)

In our case, because the projection matrices M1 and M2 are known
(from the calibration), F can be derived algebraically (Xu and Zhang
1996)

FT � [e2]xM2M1
� � [M2o1]xM2M1

� (6)

where [ ]� is a skew symmetric matrix used to perform a vector
cross-product as a matrix multiplication, e2 is the epipole of the right
camera (the intersection of all epipolar lines in this camera and also
the projection of the optical center of the left camera onto the right
camera: M2o1), M1

� is the pseudoinverse of M1, and o1 is the optical
center of the left camera, which is the null space of M1 (defined by
M1o1 � 0).

Taken together, the epipolar constraint and the midline representa-
tion are sufficient to match between points: any point on the midline
of one view should have a matching point on the other view, at the
intersection of the midline and the epipolar line (Fig. 3, step 3 and Fig.
8D).

However, as the angle between the midline and the epipolar line
becomes very small, the error in calculating the intersection becomes

large, and when the two lines are tangential, their intersection is not
defined. Unfortunately, this situation is common in octopus move-
ments and may occur several times along the midline of an arm (Fig.
6). In practice we would like to identify such cases before the
matching is attempted. We cannot use the epipolar line as defined by
Eqs. 4 and 5 because these definitions assume that the matching is
already known. Instead, we use the self-epipolar line of a point, which
is the intersection of the epipolar plane with the image plane (Fig. 5):
for a point p1 on the left image, its epipolar line on the right image is
l2. Any point on l2 can be used to calculate its own epipolar line l1 in
the left image. The point p1 must be on the line l1, so we term it the
self-epipolar line of point p1. The angle between the backbone curve
at the point p1 and the line l1 is then used as a measure of epipolar
tangency.

Although accurate matching in regions of epipolar tangency is
prevented, this geometrical situation can be used in the reconstruction
in other ways. When a projection of a 3D curve in one camera is
tangential to an epipolar line, its projection on the other camera must
also be tangential to the epipolar line in that camera (Cipolla and
Giblin 2000). This fact can be used in the matching algorithm or to
correct matching errors as subsequently described.

FIG. 5. Epipolar geometry. A 3D point q
projects to a 2D point p1 on the left camera
plane and to p2 on the right camera plane.
Optic centers of the 2 cameras (o1, o2) and
the point q create the epipolar plane. Inter-
sections of this plane with each camera plane
are the epipolar lines l1 and l2. Epipoles (e1,
e2) are the projections of the optic center of
each camera onto the other camera plane.
Any point on the ray (q, o1) projects to the
right epipolar line l2.

FIG. 6. An octopus arm marked with
lines to show areas of epipolar tangency.
Blue, green, and red regions mark areas of
the midline curve that form a very low angle
to the self-epipolar line (see text for expla-
nation). Large zoom used here (�4) was
necessary due to the small size of the arm in
the visual field. Poor image quality does not
degrade the accuracy of the analysis.
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The matching algorithm

The algorithm we use to match the two midline curves has two
stages: A) finding the first matching point and B) finding all other
matches. We use the following assumptions and preliminaries:

● Midline curves are sampled at equal distances to form sets of
equidistant points. Thus the exact location of intersection be-
tween a line and such a curve can be between the curve points.

● The number of points for the left and the right curves is generally
not the same.

● In part A of the matching algorithm, when a line intersects a
curve in more than one place, we take the intersection nearest to
the tip (in terms of distance along the curve). Because we define
the tip index as 1, the nearest intersection is the one with the
lowest index.

The algorithm is composed of the following steps: A) Finding the first
match, based on the four different cases as shown in Fig. 7 and B)
Matching the two curves: Start with the match found in A and
calculate its 3D point in space. For every point on the left midline:

1) Calculate its epipolar line.
2) Find the intersection between the epipolar line and the right

curve.
3) If there is more than one such intersection, find the best can-

didate using two stages. a) Calculate the distance along the right
curve (arc length distance) between the previous matched point and
all candidates. b) Reconstruct the 3D points for all candidates and
choose the one at smallest distance from the previously recon-
structed point (for the first time it would be the known match from
A). Use this point only if the 2D distance found for it is below
some user defined threshold; otherwise discard it. Return to stage 1
for the next point on the left curve, until all points are
matched. The algorithm runs over the points of the left curve (the
leading curve) and finds their matching points on the right curve
(the secondary curve). In some cases it is better to switch the
curves. For example, if the orientation of some part of the arm in
the leading curve is almost parallel to the line of sight in one view,
its projection may be too short for the matching algorithm. In our
implementation, the user decides which is the leading curve.

Regions of epipolar tangency (defined by the local angle between
the curve and its self-epipolar line) are skipped and not reconstructed.
The gaps in the reconstruction are filled later by interpolating from
nearby nontangential areas.

Errors in the matching process and the reconstruction

So far, we have assumed that the projection matrices and the
epipolar geometry are correct (perfect calibration) and that the 2D
midlines are correct (i.e., perfect projections of the real 3D midline of
the arm), although of course there are errors in realistic situations.
There were two main sources of error in our setup. The first type of
error occurs when reconstructing points outside the calibrated space
where the accuracy of the DLT algorithm is degraded (Chen et al.
1994; Hinrichs and McLean 1995; Kwon 1999; Kwon and Casebolt
2006). Usually we avoid this situation by moving the calibration
frame in the aquarium to cover most of the work space and then
choosing the specific position for local calibration that best matches
the movement to be analyzed. However, when the position of the arms
during motion does not fit the calibrated space, the calibration matri-
ces and the epipolar geometry used are erroneous, leading to errors in
the matching of the two 2D midlines and in the 3D reconstruction
(Fig. 8).

The second source of errors is inaccuracies in the 2D midline
curves. Such errors are more likely to occur when image quality is
poor and when parts of the arms are occluded.

Both types of errors may result in incorrect matching and distorted
reconstruction. This is especially evident in areas of epipolar tan-
gency, where incorrect matching may cause the reconstruction to fail
altogether and, even if it succeeds, the resulting 3D curve will be
noncontinuous (Fig. 8, E and F).

Correcting wrong matches

We use the same method to correct all matching errors. Novel
matching points from regions of epipolar tangency are found and the
projection matrices are recalculated to minimize the discrepancies in
the matches:

For each point on the left 2D curve a self-epipolar line is found and
the angle between that line and the curve is calculated. If this angle is
below some user-defined threshold, it is considered a tangency point
(Fig. 6). All adjacent tangency points are grouped together to form
areas of tangency. The number of groups should be the same for the
left and right curves. The middle of each such group is used as a
matching point. For each matching pair (p1, p2), we calculate the
distance between the epipolar line l2 and the point p2 that should lie
on this line. The sum of the distances for all pairs is used as the error
measure of the current calibration. Because we do not know the 3D

FIG. 7. Finding the first matching points us-
ing the epipolar geometry. Distal tips of the left
and right midlines are shown in 4 cases. Num-
bers indicate the indices starting from 1 at the
distal tip. Proximal part of the curves is not
shown. After finding the correct first matching
points (marked by circles), the curves are
cropped distally to the match. A: there is no
intersection for the epipolar line of left point 1
with the right curve, so the intersection of the
epipolar line of right point 1 with the left curve
is used. B: symmetrical case of A. C and D: in
both cases there are intersections for both the left
and the right epipolar lines. Two cases are dis-
tinguished by the index order of the intersections
for the epipolar lines of right 1 and 2 points and
the left curve. In C, the intersection index in-
creases (from 5 to 6) and in D the intersection
index decreases (from n � 1 to n). Note that
there can be more than one intersection for each
epipolar line with the left curve (with the prox-
imal part of the curve that is not shown). In such
cases the first intersection (that nearest to the tip,
indexwise) is taken.
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points (whose projections are the matching points), we cannot follow
the simple calibration technique described earlier. Instead, we use a
nonlinear optimization technique (Matlab’s fminsearch function) with
our current calibration matrices as an initial guess, to find the two
calibration matrices that minimize the matching distance.

Reconstructing arm torsion

Until now we have dealt with the problem of constructing a 3D
description of the arm using the midline representation. However,
additional information must be incorporated to uniquely describe the
arm motion. This is the change in orientation of the arm along its long
axis, termed here arm torsion, which may be readily apparent from the
direction of the suckers (Fig. 2). We use this information by marking
the 2D direction of the suckers relative to the midline of the arm in the
two views (Fig. 9). The final results are then displayed as a 3D strip
attached to the midline (Fig. 3, step 5).

Automating the process of sucker detection and direction recon-
struction seems a very ambitious goal. Even for an expert human
operator it is a difficult task. It involves knowledge of the physical
structure of the arm to overcome occlusions and uncertainties and
enforce continuity.

Constructing a coherent description of motion: registration
of consecutive curves

After the successful application of previous stages for every frame
of a movement sequence, we perform one final step of aligning the
consecutive curves. This is usually needed because there is a problem
of uncertainty about the position of the reconstructed curve along the
real arm. We are unable to start marking an arm at the same point (the
same physical location on the arm) on every frame for the whole
sequence. This is because usually there is no one such distinct point
near the base of the arm that is visible in all video frames. Even if
there is a clear mark on the arm, it is sometimes occluded by the arm
itself or by other arms or parts of the octopus’ body during the
movement.

The solution we chose was to register (find correspondences and
align) the 3D reconstructed curves from frame to frame based on the
appearance of the arms. For each frame we reconstructed a 3D
backbone curve with the maximal length possible. Then we projected
back the 3D curve on the left and right images to sample the texture
maps along the two 2D backbone curves. We sampled texture by
creating a curved 2D coordinate system aligned to the arm. This
coordinate system constitutes the backbone curve, as the major axis,
and lines that are orthogonal to it (Fig. 10 A). The sampled texture
map is a rectified 2D description of the light pattern reflected by the
octopus arms onto our cameras (Fig. 10B). Assuming that small
changes in the position from frame to frame do not change the textural
information very much, it is then possible to find the best match
between two consecutive texture maps using translation along the
main axis (the backbone of the arm). This yields a translation value
(where the correlation between the maps was maximal) that serves to
compensate for the difference in the initial reconstruction point along
the arm between two consecutive frames. The same process is re-

FIG. 8. Epipolar tangency and matching errors. A: a part of the left midline
curve with two points p1 and p2, marked to illustrate the problem. B, right
view: each point has an epipolar line (l1 and l2), and a matching point (q1 and
q2). An error in the position of the curve (especially in the direction normal to
the epipolar lines) or an error in the epipolar geometry moves the epipolar lines
up or down relative to the curve (blue and red lines). Because l1 is tangential
to the right curve, moving it up will leave p1 with no matching point, whereas
moving it down will result in 2 candidate matches for p1. Either way the 3D
reconstruction will be wrong, with a discontinuity at the area of epipolar
tangency. C–F: example of the problem of epipolar inaccuracy leading to
matching error and discontinuity in the reconstruction. C: midline of the arm
in the left view (red dots). D, right view: a subset of the epipolar lines (red
lines). Intersection points between the epipolar lines and the midline of the arm
(magenta dots). Note the small gap near the tip of the arm. E: 3D reconstruc-
tion of the arm and the calibration frame. Arm was outside the calibrated space.
F: 3D reconstruction rotated and enlarged to show the discontinuity at the area
of epipolar tangency, near the tip.

FIG. 9. Snapshot of the process used to reconstruct the direction of the
suckers along the arm. A 3D view of the midline is shown on the right (white
curve). Green lines pointing outward from the midline were already marked by
the user. These lines represent the reconstructed direction of the suckers along
the midline. White circle is a cursor that can be moved along the midline and
its direction is always perpendicular to the local tangent vector of the midline.
A line cursor (red line) is directed from the center of the circle outward and can
be rotated around the midline. Four colored dots have a fixed position on the
circle and are used as landmarks helping the user in orienting the red line in all
views. All graphical elements are projected onto the 2 camera views (middle
and left) simultaneously.
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peated for every pair of consecutive frames until the end of the
sequence. It is then possible to find the most proximal common point
for the whole set of reconstructed curves for each camera (Fig. 10C).
We clip all curves that have parts more proximal to that point, losing
that information, to obtain a set of curves that start at the same
physical point along the arm. This process is carried out for each view
independently and then the two views are registered and the clipping
can be done for the 3D curves. The result is a set of 3D curves that
start at the same point on the octopus arm, ready for further analysis.

R E S U L T S

First, we present an estimation of the reconstruction error in
our system. Then, using a simulation of the optics we estimate
the contribution of light refraction to our overall error. Last, we
present several reconstructions of octopus arm movements.

Estimation of reconstruction accuracy

RECONSTRUCTION OF A TILTED CALIBRATION FRAME. We filmed
the same object used for calibration in different orientations,
tilted relative to the original orientation. The LEDs of the
original orientation were marked and used for calibration and
those of the tilted orientation were marked and used for 3D
reconstruction. To calculate the reconstruction error (the dis-

tance between the reconstructed points and their known 3D
positions) we first had to align the reconstructed points of the
tilted orientation with the points of the original orientation. The
alignment was done in two steps. First, using principal com-
ponent analysis (PCA), for each of the orientations (original
and tilted) we found the three orthogonal axes that best account
for the variance of the data. We then took the coordinates of
each of the orientations (original and tilted) along its PC axes.
To find the best alignment, we used a simple iterative search
for the rotations that minimize the sum of 3D distances be-
tween the PC coordinates of the two orientations. Note that all
manipulations used for the alignment did not change the shape
of the reconstructed object but only rotated it. After alignment
we calculated the average reconstruction error per point, which
lay between 0.3 and 0.4 mm, approximately 1.5-fold larger
than the reconstruction error calculated for the original orien-
tations, i.e., for the same set of points used for the calibration.

RECONSTRUCTION OF AN ELONGATED OBJECT. We used a stan-
dard 30-cm, white plastic ruler, painted with black rectangular
ticks (size 2 � 4 mm, 1 cm apart) along one of its edges. We
took images of this ruler using the same setup as for all other
experiments reported here. The ruler was situated in different
locations and orientations relative to the calibrated space (Fig.
11 ). Manually digitizing the image of these small rectangles
(sometimes as narrow as 2 pixels) proved to be much more
difficult and less accurate than either marking the LEDs of the
calibration frame or the contour of the octopus arm. The LEDs
are circular and are much brighter, enabling easier marking,

FIG. 10. Finding correspondences between consecutive images of the arms.
A: octopus in one view (�2 zoom factor). Superimposed on the arm is a curved
coordinate system based on the midline (red), lines orthogonal to it (yellow),
and the manually marked contour (green). B: texture maps of the arm as
sampled using the curved coordinate system for 14 consecutive time frames. C:
texture maps aligned (by translating up or down) using the highest correlation
values between consecutive texture maps. Red line marks the most proximal
location along the arm that is seen in all frames.

FIG. 11. A: left and right views of the 40 � 20 � 20-cm calibration frame
with the light-emitting diodes (LEDs) turned on. Two cameras view the same
aquarium facet with an angle of about 40° between the principal rays of the
cameras. B: 3D reconstruction of a 30-cm ruler in 3 different orientations:
X-dominant (green dots), Y-dominant (red dots), and Z-dominant (blue dots).
Z-dominant orientation is about 45° relative to the Y-axis in the Y–Z plane. For
each orientation, its best-fit 3D line is shown in black. Reconstructed points are
superimposed on the 40 � 20 � 20-cm calibration frame (LEDs shown as
colored circles connected by blue lines; nearer facet shown by thick lines).
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even to subpixel accuracy. The contour of the octopus arm has
a smooth and continuous shape, making the decision where
exactly to mark much easier.

We used two measures to analyze the reconstruction accu-
racy: the distance between adjacent points (Table 1) and the
distance of the points to their best-fit line (Table 2). Marking
and reconstructing a line that is parallel to the Z direction, from
the cameras inward, almost parallel to the line of sight, is not
possible. We therefore used a tilted orientation of about 45°
with respect to the direction of gravity and termed it the
Z-dominant direction. Even for this orientation, the ticks were
hard to distinguish and those that were far from the cameras
were very small (�2 pixels wide). As a result the error in
marking their position was largest. The two other directions
were easier to detect and therefore more accurate. For a
reference we also present here the errors after spline smoothing
of the 2D data.

The two types of errors (in length measurements and devi-
ation from linearity) depended differently on the orientation of
the ruler. Measuring the length between points was most
accurate in the Y direction, average in the X direction, and
worst in the Z direction. Deviation from linearity was smaller
for the Z and Y directions and larger for the X direction.
Smoothing the data improved the accuracy for the Z and Y
directions more than for the X direction.

Light refraction simulation

Here we simulate the optical system to estimate the contribu-
tion of light refraction to the reconstruction error in our setup.

The simulation uses the same pinhole camera model de-
scribed earlier and the following parameters: positions of the
optical center of the two cameras; the distance between the
optical center and sensor plane of each camera; the index of
refraction for air, glass, and water; the position of the aquarium
facet; the thickness of the glass; and the position of the points
to be reconstructed inside the aquarium (Fig. 12). The path of
light from a 3D point inside the aquarium to the camera plane
is constructed of three straight line segments—one for each
medium (Fig. 12). The relation between the indices of refrac-
tions and the ratio of angles between these segments is given
by Snell’s law, and using it gives the exact intersection points
of the light rays with the inner and outer sides of the glass.
Then, the apparent position of a 3D point is given by continu-
ing the direction of the two rays from camera centers to the
aquarium outer surface and finding the intersection of these
lines (Fig. 12, q�). Note that the distance between the original
3D point and the apparent 3D point is not the reconstruction

error, which is much smaller, because the calibration step
compensates for some of the differences (mostly canceling
translational effects), as subsequently demonstrated.

We placed the coordinates of our calibration frame in the
simulated aquarium and calculated the projection of each of the
3D points onto the two camera surfaces, taking into account the
refraction of light. We then performed calibration; i.e., using
the two sets of 2D points and the known 3D coordinates of the
calibration frame we found the projection matrices for each
camera. Simulating our experimental setup (60 cm between
cameras; 90 cm between camera centers and the aquarium; 0.5
cm width of the glass; 1.0, 1.33, and 1.52 indices of refraction
for air, water, and glass, respectively; calibration frame in front
of the cameras, positioned 50 cm into the aquarium) we
achieved a reconstruction error of about 0.05 cm (averaged
error per point, for the calibration points themselves). This is
four- to sixfold smaller than the typical results we obtained for
physical calibration.

Next we checked how the reconstruction error varies with
the distance from the calibration frame. We projected a dense
grid of 3D points onto the two camera surfaces and recon-
structed their positions. The distance between each recon-

FIG. 12. Simulation of the light refraction. A 3D point q, situated inside an
aquarium filled with sea water, is projected to the 2 cameras through their
optical centers (o1, o2). Due to light refraction at the interface between water
and glass, and between glass and air, the actual path of light is composed of 3
line segments. Continuing the direction of the segments o1–ag1 and o2–ag2,
and finding their intersection gives q�, the apparent position of the point. Here
we changed the parameters of the simulation to extreme values just for display
purposes (glass width 32 cm instead of 0.5 cm, glass index of refraction 2.50
instead of 1.52 and cameras at the side of the aquarium instead of in front of
the center of the aquarium).

TABLE 1. Error in length measurements

Dominant Direction

Z Y X

Original data
RMS error 9.7 3 3.3
Max error 20.4 7 9.5

Smoothed data
RMS error 2.4 1.7 1.8
Max error 5 3.2 4.8

Values are presented as percentage of the actual size. Because the ticks were
1 cm apart, a 10% error is a 1-mm deviation.

TABLE 2. Distance of the reconstructed points from a straight line

Dominant Direction

Z Y X

Original data
RMS distance 0.09 0.11 0.17
Max distance 0.15 0.29 0.36

Smoothed data
RMS distance 0.05 0.06 0.16
Max distance 0.1 0.12 0.33

Values are in centimeters.
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structed point and its known 3D source was calculated as the
local reconstruction error, and an isosurface of 0.2 cm error
was presented (Fig. 13). The shape of this closed surface
depends on the relative position of the cameras, the calibration
frame, and the aquarium facet. Although the shape itself is
complex, it supports the statement that as long as we recon-
struct objects inside the calibrated space or in its immediate
proximity, the errors arising from light refraction are small
relative to our overall error.

Last, we simulated the ruler experiment (described earlier),
to estimate the errors in length measurements. In the simulation
we positioned a 3D cross centered at the middle of the
calibration frame. The 3D cross was composed of three straight
lines, each parallel to one of the axes. Each line was composed
of 60 evenly spaced points, 1 cm apart. The 3D cross was

reconstructed and distances between neighboring points along the
three major axes were calculated. These distances were compared
with the given value of 1 cm. The error in length measurements
varied with orientation and position (Fig. 14 A). For points inside
the calibrated space, the error was �0.55% for the Z axis,
�0.02% for the Y axis, and �0.2% for the X axis.

The reconstruction error also varied with orientation and
position (Fig. 14B). For the Z axis, the error was �1.7 mm for
points inside the calibrated space. For the Y axis it was �1.1
mm for points inside the calibrated space, and for the X axis it
was �1.1 mm for the whole range.

CAN WE USE EPIPOLAR GEOMETRY? We used the simulated
environment to check the influence of light refraction on the
accuracy of epipolar lines, using two independent ways of
doing the calculations. First, by calculating the epipolar line,
using the fundamental matrix, as done in our experiments and,
second, by simulating the projection of points composing the
epipolar line, taking light refraction into account. This was
done for a grid of 27 locations, from a rectangular box twice
the size of the calibration frame. For each location we calcu-
lated the distance between the calculated epipolar line and the
projected points. The maximal error was 0.6 pixel and average
error 0.2 pixel. Both errors are small, validating the use of
epipolar geometry in our system.

Reconstructions of octopus arm movements

1) Reaching movements (Fig. 15, A–D). In both examples
shown here, the backbone curve of the arm is almost always
confined to one plane. The curve is planar in most of the frames
and the plane stays the same during the movement. The plane
of movement includes the line that connects the octopus eyes
and the target. Usually, it is also aligned with the direction of
gravity. Note, however, that the initial stages of the reaching
movement may have a phase where they lie outside this plane.
This occurs when the creation of the bend is accompanied by
a twist movement in the arm. The bend then travels along the
arm, straightening it as it moves. The distal part of the arm
appears to be passively pulled along by the bend. The position
of the bend is clearly seen in the reconstructions. Note, how-
ever, that in Fig. 15C, another bend is formed near the base of

FIG. 13. Simulation result: the error surface of 2-mm reconstruction error.
Each point of a dense grid around the calibration frame was projected onto the
2 cameras, taking into account the effect of light refraction. 2D matching
points were reconstructed, and the distance of each reconstructed point from
the original 3D point was calculated. Error surface has a complex shape that
depends on the geometry of the experimental setup. Simulation results show
that the contribution of light refraction to the overall reconstruction error is
small. Points that are inside a rectangular space almost twice the size of the
calibration frame have reconstruction errors of �2 mm.

FIG. 14. Simulation result: errors in reconstructing straight,
60-cm lines. Three lines were oriented along the 3 major axes
and centered at the middle of the calibration frame. Red, green,
and blue show the X, Y, and Z directions, respectively. Dashed
vertical lines show the size of the calibration frame in each
direction. A: error in length measurements (%) as a function of
the distance from the center of the calibration frame. B: recon-
struction error (cm) as a function of the distance from the center
of the calibration frame.
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the arm at the late stages of the reaching movement. This bend
does not travel along the arm and it is similar in appearance to
a joint in an articulated arm.

2) Initiation movement. When a bend is created in the
octopus arm it is usually accompanied by a noticeable twist
(torsion movement) along the arm (Fig. 16 ). Such a twist
usually breaks the planarity of the arm (evident as a local helix
of the arm) as well as pointing the suckers toward a possible
target (a twist of the suckers around the midline) (Mitelman et
al. 2005). Bend initiation occurs not only before reaching
movements. The octopus in Fig. 17 created a bend while
starting to move to the left. Note that in this example the bend
is created without rotating the suckers outward.

D I S C U S S I O N

This article describes a system for 3D reconstruction of
octopus arms during natural motion. Its successful application
to several types of octopus arm movements extends our ability
to study novel aspects of these movements. In addition, the
tools we developed for 3D motion reconstruction can be
applied to any elongated, line-symmetric, soft object.

We envision using the system for a detailed study of com-
plex arm movements, such as manipulation of objects, and for
reconstructing a large number of movements to create a data-
base of octopus movements. We believe that this 3D recon-
struction system, together with the advanced electrophysiolog-
ical and modeling techniques that are already available, will
make a major contribution to the research of movement control
of muscular hydrostats.

The main bottleneck in reconstructing a large number of
movements is the time-consuming task of manually marking
arm contours. One means of saving time and increasing the
robustness of the 3D reconstruction is to use model-based
tracking and reconstruction. A nice example of this approach is
the system developed by MacIver and Nelson (2000) to track

movement and posture of an electric fish. They used a 3D
polygonal model of the fish based on a graphical user interface
that allows the user to translate, rotate, and deform the model
to fit it to the digitized video images of the animal. For a much
simpler object—the whisker of a rat—efficient, semiautomated
tracking was demonstrated by Knutsen et al. (2005). Their system
is capable of accurate 2D tracking of head and whisker move-
ments in freely moving rodents using high-speed video. The shape
of the octopus arm varies much more than the whisker of a rat or
the body of the electric fish, requiring other, more sophisticated
techniques for speeding up tracking and reconstruction.

In some behavioral setups it is possible to control for the
contrast between the animal and the background so that seg-
menting the arm from the background and tracking its move-
ments becomes easy, as in the system described by Baek et al.
(2002) for the analysis and classification of nematode behavior.
However, for the setup reported here, with two cameras in
stereo configuration, the possibility of controlling the back-FIG. 15. A: reconstruction of 0.5 s of a typical reaching movement repre-

sented by about 25 3D midline curves. Distance along the arm is color coded
from blue (arm base) to yellow (arm tip). Initial shape of the arm is highly
curved. During the movement the bend propagates toward the tip and the arm
is straightened. When the bend reaches the tip (about the 10th curve from the
last of this example), the arm is fully stretched. B: reconstruction in A is rotated
approximately 90° around the axis of the fully stretched arm to show that the
motion is planar. C and D, as in A and B for another reaching movement.

FIG. 16. A: 6 snapshots of a bend initiation movement. At 0 ms the upper
arm is straight and the suckers point downward. Later, a twist is evident (200
ms, about halfway along the arm) and the suckers rotate and point upward (400
ms). A bend is apparent (600 ms), the suckers point outward as the bend
propagates along the arm (800–1,000 ms). B: 3D reconstruction of the first 500
ms of the movement represented by 25 midline curves. Point of view is similar
to that of the images in A. C: 3D reconstruction is rotated 90° around the axis
of the straight arm of 0 ms. Fold that is created in the arm before the
propagating bend is evident both in B and in C, indicating that the arm assumes
a local helix structure. D: 3D reconstruction of the arm with the direction of the
suckers (shown as a tape attached to the midline) at time 0 ms. E: like D but
at time 400 ms. Note the change in the direction of the suckers from pointing
almost down to pointing upward over a length of less than a third of the arm.
In this bend initiation movement the local helix structure (B and C) is
accompanied by a twist around the longitudinal axis of the arm (from D to E).
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ground is rather limited, making automatic segmentation and
tracking a bigger challenge.

We recently applied the approach of texture segmentation by
multiscale aggregation (Galun et al. 2003, 2005) to segmenting
octopus arms from video data (Zelman et al., unpublished
observations). This seems to us the most promising way toward
an automatic version of midline extraction and a full arm
reconstruction system.

The reconstruction of a 3D curve from its 2D projections here
utilized a bottom-up approach, using epipolar geometry to find the
best match between the 2D projections. It is a straightforward and
accurate method but with some inherent problems of uncertainty
in areas of epipolar tangency. Other approaches can be used to
solve these problems. de Groot et al. (2002, 2004) estimated the
longitudinal axis of a snake’s tongue by fitting a polynomial
approximation of a 3D curve to the 2D projections. This essen-
tially circumvents the need for matching between the 2D projec-
tions and enforces smoothness and continuity on the result. How-
ever, this method may suffer from problems of optimization
techniques, such as getting caught in a local minima (thus giving
the wrong solution), especially when attempting reconstruction of
complex shapes. It may prove beneficial to combine both ap-
proaches to achieve a robust and accurate method for 3D recon-
struction of line-symmetrical soft bodies.

Videotaping animal behavior in an aquarium raises the
problem of light refraction. Here we did not present a general
solution for the problem but rather used methods that minimize
refraction errors. We presented experimental evidence for the
validity of our method and a simulation study that estimates the
overall contribution of light refraction as less than half of our
reconstruction errors.

Another factor influencing the accuracy and robustness of
the reconstruction is the number of cameras used. Using more
than two cameras may solve most of the problems of occlusion
and epipolar tangency. Nevertheless we used two cameras be-
cause they were easier and cheaper to synchronize, the physical
setup was simpler, and the amount of storage needed for video
data was lower. As technology progresses and prices drop it will
be possible to improve the system by using at least three cameras.

As for the reconstructions presented here, we were able for
the first time to study the changes in the shape of the octopus
arm during motion. The kinematic studies of Gutfreund et al.
(1996, 1998) and Sumbre et al. (2001) showed that, during
reaching movements, the path of the bend point is not straight
but curved. This allowed for the calculation of a best-fit plane
for the path. In most cases the deviations from that plane were
small, showing that the common path is almost planar. The 3D
reconstructions presented here showed that the midlines of the

FIG. 17. A: 6 snapshots of a bend initia-
tion movement. At 100 ms the arm, marked
by a white rectangle, is straight. Later, a bend
is formed in the arm (200 ms, about halfway
along the arm). Octopus moves slowly to the
left and the bend gradually becomes more
significant (300–600 ms). B: 3D reconstruc-
tion of the first 600 ms of the movement
represented by 30 midline curves. Point of
view is similar to that of the images in A. C:
3D reconstruction is rotated to show the arm
from the direction of the tip toward the base.
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arm themselves move within a plane for most of the duration
of the movement. There may be a phase of movements outside
this plane at the beginning of the movement, when the distal
part of the arm is curved to the right or left of the plane of motion.
It is probable that the tip is pulled by the bend and slides under
the influence of water drag into the plane of motion.

We were also able to reconstruct bend initiation movements
and observed two different categories: bend initiation with a
twist along the arm (torsion movement) that precedes a reach-
ing movement and bend initiation that does not include any
torsion component. The latter is obviously comparable to the
creation of the pseudojoints during the fetching movement
(Sumbre et al. 2005; and Fig. 1B).

What muscles are activated to execute the different types of
bend initiation movements? The anatomy of the arm suggests that
torsion movements involve activation of helical muscles. How-
ever, such activation can give rise to many different movements
depending on the combination of activations of other muscles. A
straight arm can twist while remaining straight or it can change its
shape into a helix curved around its previously straight shape.
Because measuring the activity of different muscle groups during
movement is not yet possible we may resort to modeling. Testing
hypotheses about muscle activation and arm dynamics should
naturally be carried out using a 3D computer model that can
simulate arm biomechanics. Our current 2D dynamic model
(Yekutieli et al. 2005) is insufficient for these purposes; therefore
a 3D model that incorporates helical muscles and is general
enough to simulate muscular hydrostat movements is currently
being developed (Karra 2006).

A P P E N D I X A

Finding the midline (medial axis) of the arm using the
grass-fire algorithm

Our implementation uses a discrete approximation to wave propa-
gation and collision. Two waves are initiated from each side of the

contour and the locus of their collision is the midline of the contour.
The input to the algorithm is the set of points representing the contour,
from the base to the tip and back along the other side to the base. The
algorithm has the following steps.

1) The contour and the propagating waves are represented as
integer values in a 2D matrix. To achieve the desired accuracy and
smoothness of the midline the contour is up-sampled so its bounding
box will have �25,000 cells in the 2D matrix (the matrix can be
viewed as an image, initially having only color 0 pixels).

2) The contour points are inserted into the 2D matrix and the gaps
between the points are closed by line segments, creating a continuous
curve. Two distinct values (color 1 and color 2) are used for the two
sides of the contour. The two sides of the contour are connected at the
base using color 3 pixels. The result is a closed curve.

3) The inside of the closed shape is filled with the color 4, to create
a distinction between inside and outside the shape (color 0).

4) From each side of the contour, a wave is propagated toward the
inside of the shape: all inside pixels (color 3) that have neighbors with
color 1 or 2 change their color to that of their neighbor. This step is
repeated until there are no more color 3 cells. The result is the shape
of the arm, with one half color 1 and the other color 2. The border
between these two colors is the midline of the shape.

5) The border is detected: all color 1 pixels that have color 2
neighbors change their value to a new value (color 5).

6) The color 5 pixels are turned into an ordered list representing
the midline. This is done by tracing the color 5 pixels from the tip of
the shape, back toward the base.

7) The result of step 6 is smoothed and undersampled using a cubic
smoothing spline (Matlab’s csaps function). The output is a set of
almost evenly spaced points. Very small arms (e.g., 20 pixels length)
will have a midline with �100 points that are approximately 0.2
pixels apart, whereas very large arms (600 pixels) will have about 300
points that are approximately 2 pixels apart. This way even such
extreme cases can be handled by the later stages of matching.

The Matlab implementation of this algorithm uses array operations.
Thus in step 4 for example, propagating the color of the two sides of
the contour is done by the following code. The original matrix is
termed img and its dimensions are sx � sy:

FINISHED � false;

while 	FINISHED

im3 � img��3; % find all color 3 pixels (inside pixels)

if all (all (im3��0))
FINISHED � true;

else %

im1 � img��1; % find all color 1 pixels

% shifted matrices to count the neighbors
im1u � [im1(2:end,:) ; zeros(1,sx) ];
im1d � [zeros(1,sx) ; im1(1:end-1,:)];
im1r � [zeros(sy,1) im1(:,1:end-1)];
im1( � [im1(:,2:end) zeros(sy,1) ];

% count how many color 1 neighbors each pixel has
num_1 � im1u � im1d � im1r � im1l;

% paint color 3 pixels with color 1 neighbors to color 1
img (im3 & (num_1 � 0)) �1;

% find again all color 3 pixels
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im3 � img��3;

if all (all (im3��0)) % are all inside pixels painted
FINISHED � true; % yes

else % no, there are some more inside pixels

im2 � img��2; % find all color 2 pixels

% shifted matrices to count the neighbors
im2u � [im2(2:end,:) ; zeros(1,sx) ];
im2d � [zeros(1,sx) ; im2(1:end-1,:)];
im2r � [zeros(sy,1) im2(:,1:end-1)];
im2l � [im2(:,2:end) zeros(sy,1) ];

% count how many color 2 neighbors each pixel has
num_2 � im2u � im2d � im2r � im2l;

% paint color 3 pixels with color 2 neighbors to color 2
img (im3 & (num_2 � 0)) � 2;

end
end

end % of while 	FINISHED

The Matlab implementation is very simple, easy to use, and easy to
change, but has a much slower runtime (seconds for each image)
compared with our older C�� version (	0.1 s for an image). The
C�� code is much faster for two reasons. First, C�� complied code
is usually faster than Matlab JIT (Just In Time) acceleration and,
second, we used a more efficient implementation. Instead of checking
the whole matrix in every iteration, a queue was used to process only
the neighbors of the desired pixels (a breadth first search). The queue
implementation is of course possible to code in Matlab but it proved
to be much slower than the version presented here.

The midline extraction algorithm as presented here is not part of the
Matlab image processing toolbox. However, some of the morpholog-
ical operators found in that package can achieve similar results. The
Euclidean distance transform finds the distance of each pixel in a
binary image to its nearest boundary point (Matlab’s bwdist function).
The ultimate erosion of a binary image uses the distance transform. It
is the regional maxima of the Euclidean distance transform of the
complement of an image (Matlab’s bwulterode function). For many
simple shapes, the results of ultimate erosion are very similar to the
results of our method. It is also about 10 times faster than our Matlab
implementation. However, it is not as robust and, in extreme cases, it
may fail altogether. The robustness of our approach is achieved by the
additional information used by our algorithm: the base of the arm
(represented by two points) and the arm tip (one point) to explicitly
divide the contour into two sides and propagate the waves from these
two sides inward.

Further analysis and an implementation of the grass-fire algorithm
using active contours can be found in Leymarie and Levin (1992).
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